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Abstract. Virtual reality simulation has become a crucial component in the training of surgeons as it
offers a safe and immersive way to develop and improve technical skills while eliminating the need for
disposable resources. However, a major limitation of contemporary simulators is that they require access
to an expert surgeon during training sessions in order to provide real-time performance evaluation to
the trainee. Computer-based methods that provide insightful performance evaluations relative to expert
trials have the potential to alleviate the requirement of the presence of an expert during all training
sessions. Dynamic time warping (DTW) is a popular algorithm for gesture recognition and evaluation
as it can score the similarity between signals as a measure of Euclidean distance. Traditionally, DTW
uses a sliding window to identify a given segment (sDTW). However, the segment must be of the same
length as the reference segment which is being sought. In gesture recognition from surgical data, this
condition is hardly true. This paper proposes a new approach to identifying optimal gesture window
sizes using a sliding adaptive dynamic time warping algorithm (saDTW) in which the bounds of an
initially fixed window are optimized using simulated annealing in parallel with the initial sliding window.
We validate the algorithm in context of gesture recognition in a surgical simulation for percutaneous
kidney stone removal. Compared to the tradition sDWT algorithm, the proposed algorithm leads to
a 18.45% improvement in identifying a gesture with reference to a reference segment, and a 11.88%
increased accuracy in identifying the location of a given gesture embedded in a larger signal.
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1 Introduction

Surgical simulation in a virtual environment gives trainees the opportunity to hone their skills in a standard-
ized and safe environment before entering an operating room. While operations in augmented and virtual
reality are undoubtedly beneficial in their conservation of resources including surgical instruments and dry
and wet models, they only remain beneficial if an expert surgeon is present to guide trainees through each pro-
cedure. A systematic method for automatically evaluating and comparing surgical simulation performances
remains a challenge [1]. As surgical simulation becomes more prevalent, computer-assisted performance eval-
uation is in increasing demand. If evaluation metrics could be inferred statistically, the use of simulation tools
for surgical procedures could more plausibly be integrated into the training protocol for medical residents,
and even practicing surgeons for preparatory measures [2].

Typically, an expert evaluates surgical performance based on specific surgical gestures rather than relying
on global performance metrics such as time to completion, average speed, or path length. Therefore, the
ideal computer-assisted evaluation algorithm would segment kinematic trajectories into small gestures and
provide feedback on short motion segments that are easier to interpret than long surgical tasks [3]. Within
the field of gesture segmentation and recognition, there exist two primary subsets of standard approaches
for signal processing and recognition: hierarchical measures, including deep learning approaches (RNNs,
GRUs, LSTMs, etc.) [3], and non-hierarchical methods, ranging from statistical optimization methods [4][5]
to dynamic programming algorithms [6]. The latter approach is often preferred due to limited access to
novice and expert surgical simulation data and the large amounts of data required to effectively train deep
learning-based algorithms.

One type of non-hierarchical algorithm that can be used to match segments with similar shapes is the
dynamic time warping (DTW)[7]. DTW quantifies the similarity between two sequences by constructing a
cost matrix of distances between sample points of both sequences. The cost matrix comprises a monoton-
ically increasing path, called the warping path, between the indices of the first and last sample points of
each sequence. To find a reference short gesture in a longer new signal, a window containing the reference
segment is slid over the new signal until the shortest warping path between them is found [8]. This method,
referred to as a sliding window DTW (sDTW) [9], often employs a window of fixed width. Adaptive win-
dowing is explored in [10] to classify multivariate auditory sequences. In [11], human kinetics are inferred
from a Kinect Software Development Kit (SDK), after which gestures in 3 degrees-of-freedom (DOF) are
identified by manually adjusting the width of the sliding window, i.e., the upper and lower bounds of the cost
matrix, to minimize the warping path. In a creative attempt to account for drift in chromatographs as trials
deviated from the calibration stage, [12] uses polynomial interpolation to infer the exact warping function
applied to the initially calibrated time axis. However, high order polynomials may overfit the signals. Such
instances may benefit from spline fitting, however this poses the issue of finding an inverse mapping function
with a monotonically increasing time scale. While variants of DTW have been used to compare temporal
sequences for segment matching, doing so with a fixed window size limits the algorithm’s effectiveness in
highly dynamic environments, such as surgical simulation scenarios. Therefore, there is a compelling need
to develop an adaptive segment matching algorithm in order to accommodate the complexities inherent to
surgical simulation.

This paper introduces the sliding adaptive window dynamic time warping (saDTW) algorithm. Unlike
traditional sDTW, the saDTW algorithm employs a variable-length window combined with simulated an-
nealing optimization to adaptively identify matching sequences between two time series. While traditional
sDTW can correctly match a window of fixed length to a larger segment, or select one window from a finite
list of window lengths employed, the proposed adaptive window with dynamic upper and lower bounds can
identify the best matching window of any unspecified length. This ensures that the lowest warping distance
in a signal is always found. The proposed saDTW algorithm thus holds the potential to significantly improve
the accuracy and efficiency of identifying surgical gestures.

To validate the algorithm, we collected data from a virtual reality surgical simulator for kidney stone
removal. A measured gesture S is composed of 6 signals, i.e., the temporal signals representing the position
and orientation of the surgical tool. We then define n different nonlinear warping functions, which are applied
to S to create n warped versions of S, called Sw. Each newly generated signal Sw is then padded with a
synthetic signal generated using Gaussian random walks. We then employ the proposed saDTW algorithm
and a traditional sDTW algorithm to attempt to locate S within a larger signal Xw without specifying the
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warping function, and compare the resulting warping distances. We also employ the saDTW algorithm to
predict the time interval over which the gesture S is expected to reside in each Xw. The results show that the
proposed algorithm leads to an 11.88% more accurate signal mapping and 18.45% lower warping distances
compared to the reference sDTW algorithm.

The remainder of this paper is organized as follows: Section 2 explains the methodology behind the
proposed saDTW algorithm. Section 3 introduces the surgical simulator and data collection, followed by
experimental validation in Section 4. Section 5 offers a statistical analysis of the saDTW algorithm’s perfor-
mance relative to sDTW, followed by conclusions and future research directions in Section 6.

2 Sliding Adaptive Dynamic Time Warping (saDTW) Algorithm Overview

Let X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym) be two time series. We construct a cost matrix D of
Euclidean distances between each point on X and Y as follows:

D(i, j) = ∥xi − yj∥ for i = 1, . . . , n and j = 1, . . . ,m (1)

The warping path P ∗ is a set of continuous matrix elements that defines a mapping between X and Y .
The optimal warping path minimizes:

P ∗ = argmin
P∗

∑
(i,j)∈P∗

D(i, j), (2)

subject to the following constraints:

– P ∗ starts at (1, 1) and ends at (n,m);
– The points in P ∗ must be monotonically spaced in time;
– Consecutive points in P ∗ are adjacent or diagonal.

Now consider a signal X(t), and a similar, warped signal Xw(t), where t = 1, 2, . . . , n. We define the
segment S as S = [X(s), X(s+1), . . . , X(s+ k− 1)] where k is the length of a segment, and s is the starting
index, subject to s ∈ t. We consider S to be a segment on X(t) and we seek to identify the corresponding
interval on Xw(t) with the lowest warping distance Dw. To this end, we slide a window W of the same length
as S across Xw(t). Each window Wi is defined as Wi = [Xw(i), Xw(i+ 1), . . . , Xw(i+ k − 1)], using i as the
current index in X(t). The warping distance Dw between S and each Wi is

Dw = D(S,Wi) (3)

Next, a warping distance threshold T is defined at each window. For each Wi, if Dw(S,Wi) < T , a
new parallel thread is spawned to initiate the adaptive window algorithm at this location, while the sliding
window continues its iterative evaluation on Xw(t).

2.1 Proposed Algorithm

The saDTW algorithm leverages the sDTW algorithm to find a segment S on a warped signal Xw(t). Unlike
sDTW, when Dw < T the saDTW algorithm employs simulated annealing on the window bounds in order
to identify an index range in which the warping path’s cumulative distance is minimized.

In each adaptive window thread, we preprocess the initial lower and upper bounds (ℓ and υ, respectively)
of the window for optimization using a set of logical conditions to better approximate a starting point.
Let Pw = {(S0,Wi,0), . . . , (Sk−1,Wi,k−1)} be the warping path between the initial iteration of the adaptive
window algorithm and the segment S. We count the 0th and k − 1th indices of S and Wi in Pw, and adjust
ℓ and υ as follows:

ℓ, υ ←


ℓ+ = Cℓ, if Cℓ ∈Wi,0

ℓ− = Cℓ, if Cℓ ∈ S0

υ+ = Cυ, if Cυ ∈ Sk−1

υ− = Cυ, if Cυ ∈Wi,k−1

(4)
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where Cℓ and Cυ count how many times the start and end indices of either signal are reused in Pw. Simulated
annealing is employed to find the optimal bounds ℓ and υ for each window Wi in the adaptive stage to
minimizes the warping distance Dw between S and Wi [13]. The simulated annealing energy function E to
be minimized is the warping distance Dw(S,Wi) given in (3). Initially, ℓ and υ are set to the starting and
ending indices of Wi.

The initial lower and upper bound of the sliding window are:

ℓinit = Wi,0, υinit = Wi,k−1. (5)

During each iteration, perturbations ∆ℓ and ∆υ are randomly generated within a defined neighborhood N ,
with a zero-centred mean and an adjustable variance hyperparameter σ2:

∆ℓ,∆υ ∼ N (0, σ2) (6)

New bounds ℓ′ and υ′ are then calculated:

ℓ′ = ℓ+∆ℓ, υ′ = υ +∆υ (7)

The energy difference ∆E between the old and new states is:

∆E = E(ℓ′, υ′)− E(ℓ, υ) (8)

Starting at a initial temperature τ = τ0, the state of the (k + 1)th iteration of the simulated annealing
algorithm is accepted with probability P , defined as:

Pk+1 =

{
1, if ∆E < 0

e
−∆E

τk , otherwise
(9)

The temperature is updated using a decrement factor α ∈ (0, 1), i.e.,

τk+1 = ατk (10)

The algorithm iterates until τ is less than a predefined threshold τmin, or until a maximum predeter-
mined number of iterations is reached. The final ℓ and υ are the values that minimize Dw(S,Wi), providing
an adaptively optimized window for the dynamic time warping operation.

Parallel threads update a global variable Dmin whenever a lower Dw is found:

Dmin = min [Dmin, Dw(S,Wi)] (11)

Equation (11) discards prospective windows that are no longer contending for the lowest Dw in an
identified Wi, keeping computational cost to a minimum. The saDTW algorithm is illustrated in Fig. 1 and
the corresponding pseudocode is given in Algorithm 1 below.
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Fig. 1: saDTW data acquisition and handling to optimal window bounds for lowest warping distance relative
to the reference segment.

Algorithm 1 saDTW Algorithm Pseudocode

1: Start
2: Stream PCNL simulator data X(t), Xw(t)
3: T ← threshold
4: S ← [X(s), X(s + k − 1)]
5: Initialize sliding window W with width len(segment)
6: while ⌈W ⌉ < len(Xw(t)) do
7: Compute Dw(W,S)
8: if Dw < T then
9: Parallelize

10: Run adaptive algorithm logic
11: Apply simulated annealing to adjust W
12: Evaluate Dw between adjusted W and reference
13: end if
14: end while
15: Select the window with the lowest Dw distance as the predicted segment
16: Display final Dw

17: Stop

3 Experimental Setup and Data Collection

PCNL is a procedure to remove kidney stones through an incision on the patient’s back when the stones
are too large to be passed naturally through the urinary tract. To collect data to validate the proposed
algorithm, we use the percutaneous nephrolithotomy (PCNL) surgical simulator from Marion Surgical seen
in Fig.(2) [14][15]. The user wears the Oculus Quest 2 goggles to immerse in a virtual reality environment that
emulates an operating theatre. The user manipulates a hand-held endoscopic surgical tool in the simulation
via a 6-DOF haptic device which records the position and orientation of the surgical tool. Throughout the
procedure, the haptic device impedes the operator as they interact with the patient using the endoscopic tool
by providing active haptic feedback in order to provide an element of tactile realism during the operation.

In an initial trial, an expert surgeon performs a gesture S while the 6-DOF position and orientation
(X,Y, Z, α, β, γ) of the surgical tool are recorded. We wish to stretch and compress the time axis of S
randomly and non-linearly to add variances to the measured samples so that the saDTW algorithm does not
simply look for the same sequence of numbers in subsequent time-series data. To that end, referring to Fig.
3, we warp S using the warping function in Algorithm 2: We consider the uniform time steps of S to be Sx,
and the magnitude of each sample to be Sy. To warp the time axis non-linearly, we create Swx by sampling
s+k−1

r time points from r distinct normal distributions with randomized means (µ) and variances (σ2), where
s+k−1 is the number of samples in S. The warping distance between the reference and generated sequences
is governed by the hyperparameters r, µ, and σ2. We then sort the sampled time steps in ascending order.
Next, we add Gaussian random noise N (µ, σ2) to each sample in Sy, and denote this sequence as Swy.

The result of this process is a sequence of distorted measurements Swy similar to those of Sy, and a
warped time axis Swx comprising a random monotonically increasing sequence. When streaming data from
the simulator, time steps are taken in the form of indices, and thus a uniform re-sampling must be conducted.
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Fig. 2: Marion Surgical’s PCNL simulator used for data collection. On the left, the user interacts with the
virtual tool via a 6-DOF haptic device. An overview of the virtual operating theatre is shown on the right.

We fit a cubic spline g(t) to the sequences Swx and Swy, and re-sample g(t) on the initial domain of xw[t]
uniformly as seen in the fifth and sixth plots of figure 4.

Fig. 3: Synthesized warping of S visualized using an initial uniform sampling of a sinusoid. The time axis is
first warped using sampling from r Gaussian distributions, and next noise is added to each discrete sample.
A spline is fit to the new warped signal, and it is resampled uniformly to adhere to the integer time step
convention that is expected for the proposed algorithm.

The warping transformation function described earlier is called on S 25 times in order to generate a library
of warped versions of the segment, denoted as Swi

, which we wish to identify. Each segment Swi
is embedded

within a synthesized Gaussian random walk. We refer to the lengthened padded signals from Swi
as Xwi

.
The location of the embedded gesture Swi in Xwi is irrelevant, as the sliding window will always begin at the
0th sample of Xwi . Finally, the warped trials in Xwi are ordered such that Dw(S, Swi) < Dw(S, Swi+1),∀i ∈
{0, 1, . . . , 24}. We then contrast the saDTW and sDTW algorithms’ performances on their ability to identify
increasingly warped versions of the initial reference segment within larger signals.
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Algorithm 2 Random Signal Warping for DTW Testing

1: Input: Original sequence Sx = {0, 1, . . . , s + k − 1}, Sy = {y0, y1, . . . , ys+k−1}, number of Gaussians r, means
µ = {µ0, µ1, . . . , µr}, covariances σ = {σ0, σ1, . . . , σr}

2: Output: Warped sequence Swx, Swy

3: procedure RandomSignalWarp(Sx, Sy, r, µ, σ)
4: Swx ← {}
5: for i = 1 to r do
6: Swx ← Swx ∪N (µi, σ

2
i ,

s+k−1
r

)
7: end for
8: Sort Swx in ascending order
9: Swy ← Sy

10: for i = 0 to s + k − 1 do
11: Swy[i]← Sy[i] +Ni ▷ Ni ∼ N (µ, σ2) is random noise
12: end for
13: Fit a B-spline of order 3 to Swx, Swy

14: Swy ← g(N), N ∈ Z ∩ [0, s + k − 1]
15: return Swx, Swy

16: end procedure

The proposed saDTW algorithm is validated and compared against the sDTW in two separate ways. In
the experimental evaluation, a window containing the original gesture S is slid over each Xw to attempt to
locate S with an unknown warping function. As the window slides over Xw, the algorithm calculates the
warping distance and when the latter is below a predefined threshold, we spawn a parallel computer thread
to adaptively optimize the bounds of the sliding window to further minimize the warping distance. Two
metrics are used to evaluate the algorithm’s performance:

Warping distance: The warping distance, as defined in (3), gives a degree of confidence in the accuracy
of the identified segment, i.e., it quantifies how closely S can be matched to a segment of X;

Interval correctness: The interval correctness compares the predicted with the actual range of a segment
in Xw. This is quantified by the Jaccard Index, commonly referred to as the intersection over union (IOU)
computed across all DOFs for each Sw. The IOU between each identified range and the true interval is:

IoU(p0, pn, t0, tm) =
max(0,min(pn, tm)−max(p0, t0))

max(pn, tm)−min(p0, t0)
(12)

where (p0, pn) is the predicted range on Sw from the starting index to the ending index of the adaptive
window W , and (t0, tm) is the true range of Swi

. The IOU score is on the interval [0, 1], where a perfect
identification of the segment of interest would be 1.

4 Experimental Results

The benefit of the adaptive windowing over the fixed window approach can be observed in the example
shown in Fig. 4. The top panel shows the reference signal S, whose corresponding Sw is observed in the
bottom panel within the index range of 2000-3000 (true range). The sDTW algorithm identifies the window
having the smallest warping distance to be between the indices of 1917 to 2917, which results in an IOU
equal to 0.847. The reason the algorithms underestimates the true range of the signal is likely due to the fact
that Sw has been stretched to cover a larger time interval than the initial sliding window. In contrast, the
proposed saDTW algorithm more correctly identifies the signal within the ranges of x to 3000, leading to an
IOU of 0.923. The results for each algorithm across all DOFs at tabulated in 1, which displays the average
warping distance identified as well as the average IOU score for the saDTW algorithm and sDTW algorithm
respectively.

The minimum warping distance recorded for both algorithms for all the 25 Sw used in the validation are
shown and compared graphically in Fig. 5. As it can be seen in the figure, the proposed algorithm outperforms
the fixed window approach, and, on average, leads to a 18.45% reduction in the warping distance. Next we
validate the correctness of the saDTW and sDTW algorithms using the known intervals over which Swi

are
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Fig. 4: The convergence of the simulated annealing from the saDTW window is observed to expand upon the
boundary of the window with the minimum warping distance on Xw in order to more accurately capture the
warped gesture Swi

.

embedded within each larger signal in Xwi . This is done by fitting Gaussians to the IOU results collected
across all DOFs for both algorithms for statistical analysis. The comparison of both algorithms’ means (µ)and
variances (σ) conclude that the saDTW algorithm is 11.88% closer to the ideal identification of each gesture
across all DOFs as compared to the sDTW algorithm.

Table 1: Each column of the table corresponds to the saDTW and sDTW algorithms’ average warping distance
(Dw) and IOU scores across each degree of freedom (translation along X,Y,and Z, as well as rotation about
each axis, α, β, γ).

Average Dw Average IOU
Algorithm X Y Z α β γ X Y Z α β γ

sDTW 559.449 236.808 311.944 315.082 323.186 323.279 0.828 0.433 0.102 0.607 0.377 0.399
saDTW 355.436 221.401 306.922 260.931 307.445 288.014 0.763 0.550 0.485 0.724 0.582 0.618

5 Discussion

Figure 6 shows the average and standard deviation of the both algorithms’ warping distances across each
signal of increasing levels of distortion with S as a reference segment. It is observed that the saDTW algorithm
performs better than the regular sDTW method.

The performances of the saDTW and sDTW algorithms in identifying a low warping distance is also
computed using a paired T-test:

t =
d̄

σ/
√
n

(13)

where d̄ is the mean of the differences between the paired observations, σ is the standard deviation of the
differences and n is the number of pairs.
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Fig. 5: Minimum warping distances measured by the saDTW and sDTW algorithms when identifying the
reference signal S across all trials. X, Y , and Z and α, β, and γ are the translational and rotational DOFs
of the surgical tool measured by the simulator.
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The Gaussians fit to each algorithm’s resulting IOU scores are compared by considering the ideal case
wherein gestures have been correctly identified with perfect IOU scores and consistency across all DOFs. In
this instance, we would obtain a Gaussian with a mean vector µ = 16×1, and a covariance matrix Σ = 06×6.
We evaluate the saDTW and sDTW algorithms individually by taking the Euclidean distance of each of their
mean vectors to that of the ideal case, and the Frobenius distance between each their covariance matrices
and that of the ideal case. We then quantify how much closer one algorithm is to the ideal case using the
two aforementioned metrics. The Euclidean distance and Frobenius distance between means and covariances
respectively are computed as follows:

d(µ,16×1) =

√√√√ 6∑
i=1

(µi − 1)2 (14)

∥Σ− 06×6∥F =

√√√√ 6∑
i=1

6∑
j=1

Σ2
ij (15)

Where µ is the mean of a Gaussian fit to either the saDTW or sDTW algorithm, and σ is the covariance
matrix for the respective Gaussian.

The result is summarized in Fig. 6. The paired T-test yields a T-statistic of -3.767759, and a p-value of
0.000946, strongly indicating that the saDTW algorithm consistently converges to a window with a lower
warping distance than that of the sDTW algorithm. In comparing the saDTW and sDTW algorithms’ IOU
scores by fitting Gaussians to each respectively across all DOFs and using equations 14 and 15 to quantify
the degree to which their means and variances adhere to the distribution describing an ideal identification
of each gesture, we observe that the saDTW algorithm is 11.88% more effective in identifying the correct
interval over which a gesture is expected to be observed than the reference sDTW algorithm. We can thus
conclude that the saDTW algorithm significantly improves the convergence of a sliding window to a minimal
warping distance compared to the regular sDTW algorithm.

Fig. 6: Comparative performance analysis of saDTW and sDTW algorithms. IOU performance in gesture
recognition task (left). Warping distance performance across all trials (right).
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6 Conclusion and Future Work

This paper presents a new variation of the DTW algorithm, leveraging the existing sliding window feature to
match sequences embedded within larger signals to a reference segment. In addition to identifying a window
with a minimal Dw, the saDTW algorithm spawns parallel computing threads at windows below a certain
distance threshold to employ a simulated annealing-backed adaptive window optimization, resulting in the
identification of a window within which the segment more confidently resides.

In the context of surgical trainee evaluation and gesture detection using a specialized haptic PCNL
simulator in virtual reality, the saDTW algorithm poses a statistically significant improvement relative to
the reference sDTW algorithm both in its ability to identify segments with a lower warping distance Dw

(18.45%), and in its accuracy of gesture recognition, measured by each prediction’s IOU with respect to the
ground truth intervals on which the gestures were known to be (11.88%).

Future work will focus on the development of real-time gesture recognition algorithms to carry out seg-
ment matching tasks as data is streamed lived from the PCNL surgical simulator. In addition to overcoming
the real-time challenge inherent to dynamic programming algorithms such as DTW, further analysis of seg-
ments from live trials is required in order to provide the user with informative feedback beyond statistical
similarity to a reference trial. For example, for the purpose of implementing instantaneous visual trajectory
cues, or haptic feedback as guidance.
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